Dynamics of surface diffeomorphisms relative to homoclinic and heteroclinic orbits

نویسنده

  • Pieter Collins
چکیده

The Nielsen-Thurston theory of surface diffeomorphisms shows that useful dynamical information can be obtained from a finite collection of periodic orbits. In this paper, we extend these results to homoclinic and heteroclinic orbits of saddle points. These orbits are most readily computed and studied as intersections of unstable and stable manifolds comprising homoclinic or heteroclinic tangles in the surface. We show how to compute a map of a one-dimensional space similar to a train-track which represents the isotopy-stable dynamics of the surface diffeomorphism relative to a tangle. All orbits of this one-dimensional representative are globally shadowed by orbits of the surface diffeomorphism, and periodic, homoclinic and heteroclinic orbits of the one-dimensional representative are shadowed by similar orbits in the surface. By constructing suitable surface diffeomorphisms, we prove that these results are optimal in the sense that the topological entropy of the one-dimensional representative is the greatest lower bound for the entropies of diffeomorphisms in the isotopy class. Mathematics subject classification: Primary: 37E30. Secondary: 37B10, 37C27, 37E25. ∗This work was partially funded by Leverhulme Special Research Fellowship SRF/4/9900172

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy-minimising models of surface diffeomorphisms relative to homoclinic and heteroclinic orbits

In the theory of surface diffeomorphisms relative to homoclinic and heteroclinic orbits, it is possible to compute a one-dimensional representative map for any irreducible isotopy class. The topological entropy of this graph representative is equal to the growth rate of the number of essential Nielsen classes of a given period, and hence is a lower bound for the topological entropy of the diffe...

متن کامل

Symmetric homoclinic tangles in reversible systems

We study the dynamics near transverse intersections of stable and unstable manifolds of sheets of symmetric periodic orbits in reversible systems. We prove that the dynamics near such homoclinic and heteroclinic intersections is not C1 structurally stable. This is in marked contrast to the dynamics near transverse intersections in both general and conservative systems, which can be C1 structura...

متن کامل

Homoclinic and Heteroclinic Bifurcations in Vector Fields

An overview of homoclinic and heteroclinic bifurcation theory for autonomous vector fields is given. Specifically, homoclinic and heteroclinic bifurcations of codimension one and two in generic, equivariant, reversible, and conservative systems are reviewed, and results pertaining to the existence of multi-round homoclinic and periodic orbits and of complicated dynamics such as suspended horses...

متن کامل

Exponential Dichotomies and Homoclinic Orbits from Heteroclinic Cycles

In this paper, we investigate the homoclinic bifurcations from a heteroclinic cycle by using exponential dichotomies. We give a Melnikov—type condition assuring the existence of homoclinic orbits form heteroclinic cycle. We improve some important results.

متن کامل

Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem - Part II

We present a method for proving the existence of symmetric periodic, heteroclinic or homoclinic orbits in dynamical systems with the reversing symmetry. As an application we show that the Planar Restricted Circular Three Body Problem (PCR3BP) corresponding to the Sun-JupiterOterma system possesses an infinite number of symmetric periodic orbits and homoclinic orbits to the Lyapunov orbits. More...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008